##plugins.themes.bootstrap3.article.main##

The current coronavirus pandemic has brought many deaths and affected economies around the world. The causative agent of COVID-19 is identified as SARS-CoV-2, a close relative to SARS-CoV that caused an outbreak of severe acute respiratory distress in 2002-2003. During the course of the pandemic, there has been many reports of mutations that occurred to SARS-CoV-2 with several lineages that has been identified around the globe. In this paper, a summary of the notable variants of SARS-CoV-2 is discussed.

Downloads

Download data is not yet available.

References

  1. World Health Organization. (2020). Weekly Epidemiological Update - 29 December 2020. Retrieved February 15, 2021, from https://www.who.int/publications/m/item/weekly-epidemiological-update---29-december-2020.
     Google Scholar
  2. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England), 6736(20), 1–10. https://doi.org/10.1016/S0140-6736(20)30251-8.
    DOI  |   Google Scholar
  3. Pereira, F. (2020). Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene. Infection, Genetics and Evolution. https://doi.org/10.1016/j.meegid.2020.104525.
    DOI  |   Google Scholar
  4. Centers for Disease Control and Prevention (CDC). (2021). Genomic Surveillance for SARS-CoV-2 Variants. Retrived February 15, 2021 from https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance.html
     Google Scholar
  5. Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. C. C., Bieniasz, P. D. (2020). Escape from neutralizing antibodies 1 by SARS-CoV-2 spike protein variants. ELife. https://doi.org/10.7554/eLife.61312.
    DOI  |   Google Scholar
  6. Koyama, T., Platt, D., & Parida, L. (2020). Variant analysis of SARS-cov-2 genomes. Bulletin of the World Health Organization. https://doi.org/10.2471/BLT.20.253591.
    DOI  |   Google Scholar
  7. Voloch, C. M., da Silva Francisco, R., de Almeida, L. G. P., Cardoso, C. C., Brustolini, O. J., Gerber, A. L., de Faria Cavalcante, L. T. (2020). Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. MedRxiv. https://doi.org/10.1101/2020.12.23.20248598.
    DOI  |   Google Scholar
  8. Rambaut, A., Loman, N., Pybus, O., Barclay, W., Barrett, J., Carabelli, A., Volz, E. (2020). Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological.Org.
     Google Scholar
  9. Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y. Q., Zhou, Y. (2020). Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. https://doi.org/10.1126/science.abc4730.
    DOI  |   Google Scholar
  10. Kemp, S. A., Datir, R. P., Collier, D. A., Ferreira, I. A. T. M., Carabelli, A., Harvey, W., Gupta, R. K. (2020). Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ∆H69/V70. BioRxiv. https://doi.org/10.1101/2020.12.14.422555.
    DOI  |   Google Scholar
  11. Wu, K., Werner, A. P., Moliva, J. I., Koch, M., Choi, A., Stewart-Jones, G. B. E., Edwards, D. K. (2021). mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2021.01.25.427948.
    DOI  |   Google Scholar
  12. Collier, D., Meng, B., Ferreira, I., Datir, R., Temperton, N. J., Elmer, A., Gupta, R. (2021). Impact of SARS-CoV-2 B.1.1.7 Spike variant on neutralisation potency of sera from individuals vaccinated with Pfizer vaccine BNT162b2. MedRxiv.
     Google Scholar
  13. Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Lambson, B. E., Moore, P. L. (2021). SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2021.01.18.427166.
    DOI  |   Google Scholar
  14. Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Montefiori, D. C. (2020). Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. https://doi.org/10.1016/j.cell.2020.06.043.
    DOI  |   Google Scholar
  15. Horby, P., Huntley, C., Davies, N., Edmunds, J., Ferguson, N., Medley, G., Semple, C. (2021). NERVTAG note on B.1.1.7 severity. SAGE.
     Google Scholar
  16. European Centre for Disease Prevention and Control (ECDC). (2020). Detection of new SARS-CoV-2 variants related to mink. ECDC: Stockholm; 2020.
     Google Scholar
  17. National Institute of Infectious Diseases, Japan. (2021). New VARIANT strain OF SARS-CoV-2 identified in travelers from Brazil. (2021, January 12). Retrieved February 15, 2021, from https://www.niid.go.jp/niid/en/2019-ncov-e/10108-covid19-33-en.html.
     Google Scholar
  18. Sabino, E. C., Buss, L. F., Carvalho, M. P. S., Prete, C. A., Crispim, M. A. E., Fraiji, N. A., Faria, N. R. (2021). Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. The Lancet. https://doi.org/10.1016/s0140-6736(21)00183-5.
    DOI  |   Google Scholar
  19. Resende, P. C., Bezerra, J. F., Teixeira de Vasconcelos, R. H., Arantes, I., Appolinario, L., Mendonça, A. C., Siqueira, M. M. (2021). Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020 - SARS-CoV-2 coronavirus / nCoV-2019 Genomic Epidemiology - Virological. Virological.
     Google Scholar