##plugins.themes.bootstrap3.article.main##

In the recent years, there was an increasing demand for discovering antiviral agents from medicinal plants having high activity and economically cheap. The medicinal plants have become very important because they have a main importance for determination, isolation and purification of natural chemical compounds in order to use them in many medicinal application. The scientific researches proved that plants extracts have antiviral activity against corona virus . The explanation of this activity belongs to presence of active chemical compounds act to stop the viruses in living body by multi different mechanisms. This review will provide an overview about the perspective of used some various medicinal plants against corona virus as antiviral drug and compared with antibiotics to reduce/prevent corona virus risk.  In conclusion of this review, some medicinal herbs required urgent extensive work to develop natural antiviral agents to fight corona virus (COVID-19).                                                                                                                               

Downloads

Download data is not yet available.

References

  1. Kenneth M, Martin S, Allyson B. Coronavirus disease 2019 (COVID-19): Epidemiology, virology, clinical features, diagnosis, and prevention. Literature review current through: This topic last updated: Apr 28, 2020.
     Google Scholar
  2. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-epidemiology-virology-clinical-features-diagnosis-and-prevention.
     Google Scholar
  3. Marco C, Michael R, Arturo C, Scott C, Raffaela D. Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls Publishing LLC. Bookshelf ID: NBK554776, 2020. PMID: 3215036‏.
     Google Scholar
  4. Alexander E, Susan C, Ralph S, Raoul J, Christian D, Anastasia A, Bart L. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbi. 2020; 5: 536–544. https://doi.org/10.1038/s41564-020-0695-z.
    DOI  |   Google Scholar
  5. World Health Organization. Surveillance case definitions for human infection with novel coronavir (‎‎‎ nCoV)‎‎‎: interim guidance v1, January 2020 (No. WHO/2019-nCoV/ Surveillance /v2020. 1). World Health Organization.
     Google Scholar
  6. Ahn D, Shin H, Kim M, Lee S, Kim H, Myoung J, Kim B, Kim S. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol. 2020;30 (3): 313-324. https://doi.org/ 10.4014/jmb.2003.0301.
    DOI  |   Google Scholar
  7. Shereen M, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 16: 24 : 91-98. https://doi.org/10.1016/j.jare.2020.03.005.
    DOI  |   Google Scholar
  8. Hoffmann H, Kleine W, Schroeder S, Krüger N, Herrler T, Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181 (2): 271-280. https://doi.org/10.1016/j.cell.2020.02.052.
    DOI  |   Google Scholar
  9. Helena J, Erica B, Paul B. Coronaviruses: Methods and Protocols, Methods in Molecular Biology, vol. 1282, Chapter 1. Springer Science+Business Media New York, 2015 https://doi.org/ 10.1007/978-1-4939-2438-7_1.
     Google Scholar
  10. Dhama K, Karthik K, Khandia R, Munjal A, Tiwari R, Rana R. Medicinal and Therapeutic Potential of Herbs and Plant Metabolites / Extracts Countering Viral Pathogen - Current Knowledge and Future Prospects. Curr Drug Metab. 2018; 19 (3) : 236 – 263. https://doi.org/10.2174/138920021966618012914525.
    DOI  |   Google Scholar
  11. Kinghorn AD. The discovery of drugs from higher plants. Biotechnolo. 1994; 26: 81-108. https://doi.org/10.1016/b978-0-7506-9003-4.50010-1.
    DOI  |   Google Scholar
  12. Akram M, Tahir I, Shah S, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res. 2018; 32 (5): 811-822. https://doi.org/ 10.1002/ptr.6024.
    DOI  |   Google Scholar
  13. Jassim S, Naji M. Novel antiviral agents: a medicinal plant perspective. J Appl Microbi. 2003; 95: 412-427 . https://doi.org/10.1046/j.1365-2672.2003.02026.x.
    DOI  |   Google Scholar
  14. Visintini J, Redko F, Muschietti L, Campos R, Martino V, Cavallaro L. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol J. 2013; 10: 245. https://doi.org/10.1186/1743-422X-10-245.
    DOI  |   Google Scholar
  15. Schuhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003; 10: 504–10. https://doi.org/10.1078/094471103322331467.
    DOI  |   Google Scholar
  16. Heurich A, Hofmann W, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014; 88(2): 1293-307. https://doi.org/10.1128/JVI.02202-13.
    DOI  |   Google Scholar
  17. Kim H, Eo E, Park H, Kim Y, Park S, Shin H, Kim K. Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir Ther. 2010; 15(5): 697-709. https://doi.org/10.3851/IMP1615.
    DOI  |   Google Scholar
  18. Kim H, Shin S, Park H, Kim Y, Yun Y, Park S, Kim K. In vitro inhibition of coronavir replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J clinical virolo. 2008; 41(2): 122-128. https://doi.org/10.1016/j.jcv.2007.10.011.
    DOI  |   Google Scholar
  19. Ruffa M, Wagner M, Suriano M, Vicente C, Nadinic J, Pampuro S, Salomón H, Campos R, Cavallaro L. Inhibitory effect of medicinal herbs against RNA and DNA viruses. Antivir Chem Chemother. 2004; 15(3):153-9.
     Google Scholar
  20. https://doi.org/10.1177/095632020401500305.
    DOI  |   Google Scholar
  21. Lau K, Lee K, Koon C, Cheung C, Lau C, Ho H. Immunomodulatory and anti SARS activities of Houttuynia cordata. J Ethnopharmac. 2008; 118: 79 85. https://doi.org/10.1016/j.jep.2008.03.018.
    DOI  |   Google Scholar
  22. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Glycyrrhizin, component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003; (9374): 2045-6631. https://doi.org/10.1016/s0140-6736(03)13615-x.
    DOI  |   Google Scholar
  23. Chen C., Zuckerman D, Brantley S, Sharpe M, Childress K, Hoiczyk E, Pendleton A. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res. 2014; 16: 10:24. https://doi.org/10.1186/1746-6148-10-24.
    DOI  |   Google Scholar
  24. Yang L, Ha T, Oh W. Discovery of inhibitory materials against PEDV corona virus from medicinal plants . Japanese J Veterinary Resea. 2016; 64(Supplement 1): S53-S63. https://doi.org/10.14943/jjvr.64.suppl.s53.
     Google Scholar
  25. Signer J, Jonsdottir H, Albrich W. In vitro antiviral activity of Echinaforce®, an Echinac purpurea preparation, against common cold coronavirus 229E and highly pathogenic MERS-CoV and SARS-CoV. J Virol. 2020 . https://doi.org/10.21203/rs.2.24724/v.
    DOI  |   Google Scholar
  26. 24. Li S, Chen C, Zhang H, Guo H, Wang H, Wang L, Li R. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005; 67(1): 18-23. https://doi.org/ 10.1016/j.antiviral.2005.02.007.
    DOI  |   Google Scholar
  27. Zhang H, Penninger J, LiY, Zhong N, Slutsky A. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46(4): 586-590. https://doi.org/ 10.1007/s00134-020-05985-9.
    DOI  |   Google Scholar
  28. 26. Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink Ranst M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007; 75(3): 179-87. https://doi.org/10.1016/j.antiviral.2007.03.003.
    DOI  |   Google Scholar
  29. Takenaka T. Isolation of Nicotianamine from Soybean Broth and Antihypertensive Effects Spontaneously Hypertensive Rats. J Bre. Soc. JAPAN. 2009; 104(11): 858-865. https://doi.org/10.6013/jbrewsocjapan.104.858.
    DOI  |   Google Scholar
  30. Takahashi S, Yoshiya T, Yoshizawa K, Sugiyama T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed Res. 2015; 36(3): 219-24. https://doi.org/ 10.2220/biomedres.36.219.
    DOI  |   Google Scholar
  31. Ho T, Wu S, Chen J, Li C, Hsiang C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007; 74(2): 92-101. https://doi.org/10.1016/j.antiviral.2006.04.014.
    DOI  |   Google Scholar
  32. Luis E, Marta L, Enrique A, Damon D, Tim S, Ralph B. Vaccines to prevent severe acute respiratory syndrome coronavirusinduced disease. Virus Res. 2008; 133(1): 45-62. https://doi.org/10.1016/j.virusres.2007.01.021.
    DOI  |   Google Scholar
  33. Paul A, Steven O., Stephan S., Allan N., Ray C., Joseph P. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003; 300(5624):1394-9 https://doi.org/10.1126/science.1085952.
    DOI  |   Google Scholar
  34. Uzor P, Prasasty V, Agubata C. Natural Products as Sources of Antimalarial Drugs. Evid Base Complement Alternat Med. 2002; 2020: 9385125. https://doi.org/10.1155/2020/9385125.
    DOI  |   Google Scholar
  35. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A Promising Cure for the Global Panic. Sci Total Environ. 2020; 725: 138277. https://doi.org/ 10.1016/j.scitotenv.2020.138277.
    DOI  |   Google Scholar
  36. Chen F, Chan K, Jiang Y, Kao R, Lu H, Fan K, Cheng V, Tsui W, Hung I, Lee T, Guan Y, Peiris J, Yuen K. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clini Virol. 2004; 31(1): 69–75. https://doi.org/10.1016/j.jcv.2004.03.003.
    DOI  |   Google Scholar
  37. Ruocong Y, Hao L, Chen B, Yingchao W, Xiaohui Z, Rui G, Siying W, Jianxun W, Elaine L, Hang C, Peng L, Tiegang L, Yi W. Chemical Composition and Pharmacological Mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction Against Coronavirus Disease 2019 (COVID-19): In Silico and Experimental Study. Pharmacol Res 2020; 157: 104820. https://doi.org/10.1016/j.phrs.2020.104820.
    DOI  |   Google Scholar
  38. Harald M. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection?. Front Immunol. 2020; 11:1239. https://doi.org/10.3389/fimmu.2020.01239.
    DOI  |   Google Scholar
  39. Baltina LA, Kondratenko RM, Baltina J, Plyasunova OA, Pokrovskii AG, Tolstikov GA. Prospects for the Creation of New Antiviral Drugs Based on Glycyrrhizic Acid and Its Derivatives (A Review). Pharm Chem J. 2009; 43(10): 539-548. https://doi.org/ 10.1007/s11094-010-0348-2.
    DOI  |   Google Scholar
  40. Yue D, Zeyu C, Liang C, Gang D, Zhengzhong W , Wei X. Antiviral Activity of Chlorogenic Acid Against Influenza A (H1N1/H3N2) Virus and Its Inhibition of Neuraminidase. Sci Rep. 2017 ;7 :45723. https://doi.org/ 10.1038/srep45723.
    DOI  |   Google Scholar