Perspective Study of Exploring Some Medicinal Plants to Manage the Pandemic COVID-19
##plugins.themes.bootstrap3.article.main##
In the recent years, there was an increasing demand for discovering antiviral agents from medicinal plants having high activity and economically cheap. The medicinal plants have become very important because they have a main importance for determination, isolation and purification of natural chemical compounds in order to use them in many medicinal application. The scientific researches proved that plants extracts have antiviral activity against corona virus . The explanation of this activity belongs to presence of active chemical compounds act to stop the viruses in living body by multi different mechanisms. This review will provide an overview about the perspective of used some various medicinal plants against corona virus as antiviral drug and compared with antibiotics to reduce/prevent corona virus risk. In conclusion of this review, some medicinal herbs required urgent extensive work to develop natural antiviral agents to fight corona virus (COVID-19).
Downloads
References
-
Kenneth M, Martin S, Allyson B. Coronavirus disease 2019 (COVID-19): Epidemiology, virology, clinical features, diagnosis, and prevention. Literature review current through: This topic last updated: Apr 28, 2020.
Google Scholar
1
-
https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-epidemiology-virology-clinical-features-diagnosis-and-prevention.
Google Scholar
2
-
Marco C, Michael R, Arturo C, Scott C, Raffaela D. Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls Publishing LLC. Bookshelf ID: NBK554776, 2020. PMID: 3215036.
Google Scholar
3
-
Alexander E, Susan C, Ralph S, Raoul J, Christian D, Anastasia A, Bart L. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbi. 2020; 5: 536–544. https://doi.org/10.1038/s41564-020-0695-z.
DOI |
Google Scholar
4
-
World Health Organization. Surveillance case definitions for human infection with novel coronavir ( nCoV): interim guidance v1, January 2020 (No. WHO/2019-nCoV/ Surveillance /v2020. 1). World Health Organization.
Google Scholar
5
-
Ahn D, Shin H, Kim M, Lee S, Kim H, Myoung J, Kim B, Kim S. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol. 2020;30 (3): 313-324. https://doi.org/ 10.4014/jmb.2003.0301.
DOI |
Google Scholar
6
-
Shereen M, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 16: 24 : 91-98. https://doi.org/10.1016/j.jare.2020.03.005.
DOI |
Google Scholar
7
-
Hoffmann H, Kleine W, Schroeder S, Krüger N, Herrler T, Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181 (2): 271-280. https://doi.org/10.1016/j.cell.2020.02.052.
DOI |
Google Scholar
8
-
Helena J, Erica B, Paul B. Coronaviruses: Methods and Protocols, Methods in Molecular Biology, vol. 1282, Chapter 1. Springer Science+Business Media New York, 2015 https://doi.org/ 10.1007/978-1-4939-2438-7_1.
Google Scholar
9
-
Dhama K, Karthik K, Khandia R, Munjal A, Tiwari R, Rana R. Medicinal and Therapeutic Potential of Herbs and Plant Metabolites / Extracts Countering Viral Pathogen - Current Knowledge and Future Prospects. Curr Drug Metab. 2018; 19 (3) : 236 – 263. https://doi.org/10.2174/138920021966618012914525.
DOI |
Google Scholar
10
-
Kinghorn AD. The discovery of drugs from higher plants. Biotechnolo. 1994; 26: 81-108. https://doi.org/10.1016/b978-0-7506-9003-4.50010-1.
DOI |
Google Scholar
11
-
Akram M, Tahir I, Shah S, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res. 2018; 32 (5): 811-822. https://doi.org/ 10.1002/ptr.6024.
DOI |
Google Scholar
12
-
Jassim S, Naji M. Novel antiviral agents: a medicinal plant perspective. J Appl Microbi. 2003; 95: 412-427 . https://doi.org/10.1046/j.1365-2672.2003.02026.x.
DOI |
Google Scholar
13
-
Visintini J, Redko F, Muschietti L, Campos R, Martino V, Cavallaro L. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol J. 2013; 10: 245. https://doi.org/10.1186/1743-422X-10-245.
DOI |
Google Scholar
14
-
Schuhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003; 10: 504–10. https://doi.org/10.1078/094471103322331467.
DOI |
Google Scholar
15
-
Heurich A, Hofmann W, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014; 88(2): 1293-307. https://doi.org/10.1128/JVI.02202-13.
DOI |
Google Scholar
16
-
Kim H, Eo E, Park H, Kim Y, Park S, Shin H, Kim K. Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir Ther. 2010; 15(5): 697-709. https://doi.org/10.3851/IMP1615.
DOI |
Google Scholar
17
-
Kim H, Shin S, Park H, Kim Y, Yun Y, Park S, Kim K. In vitro inhibition of coronavir replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J clinical virolo. 2008; 41(2): 122-128. https://doi.org/10.1016/j.jcv.2007.10.011.
DOI |
Google Scholar
18
-
Ruffa M, Wagner M, Suriano M, Vicente C, Nadinic J, Pampuro S, Salomón H, Campos R, Cavallaro L. Inhibitory effect of medicinal herbs against RNA and DNA viruses. Antivir Chem Chemother. 2004; 15(3):153-9.
Google Scholar
19
-
https://doi.org/10.1177/095632020401500305.
DOI |
Google Scholar
20
-
Lau K, Lee K, Koon C, Cheung C, Lau C, Ho H. Immunomodulatory and anti SARS activities of Houttuynia cordata. J Ethnopharmac. 2008; 118: 79 85. https://doi.org/10.1016/j.jep.2008.03.018.
DOI |
Google Scholar
21
-
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Glycyrrhizin, component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003; (9374): 2045-6631. https://doi.org/10.1016/s0140-6736(03)13615-x.
DOI |
Google Scholar
22
-
Chen C., Zuckerman D, Brantley S, Sharpe M, Childress K, Hoiczyk E, Pendleton A. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res. 2014; 16: 10:24. https://doi.org/10.1186/1746-6148-10-24.
DOI |
Google Scholar
23
-
Yang L, Ha T, Oh W. Discovery of inhibitory materials against PEDV corona virus from medicinal plants . Japanese J Veterinary Resea. 2016; 64(Supplement 1): S53-S63. https://doi.org/10.14943/jjvr.64.suppl.s53.
Google Scholar
24
-
Signer J, Jonsdottir H, Albrich W. In vitro antiviral activity of Echinaforce®, an Echinac purpurea preparation, against common cold coronavirus 229E and highly pathogenic MERS-CoV and SARS-CoV. J Virol. 2020 . https://doi.org/10.21203/rs.2.24724/v.
DOI |
Google Scholar
25
-
24. Li S, Chen C, Zhang H, Guo H, Wang H, Wang L, Li R. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005; 67(1): 18-23. https://doi.org/ 10.1016/j.antiviral.2005.02.007.
DOI |
Google Scholar
26
-
Zhang H, Penninger J, LiY, Zhong N, Slutsky A. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46(4): 586-590. https://doi.org/ 10.1007/s00134-020-05985-9.
DOI |
Google Scholar
27
-
26. Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink Ranst M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007; 75(3): 179-87. https://doi.org/10.1016/j.antiviral.2007.03.003.
DOI |
Google Scholar
28
-
Takenaka T. Isolation of Nicotianamine from Soybean Broth and Antihypertensive Effects Spontaneously Hypertensive Rats. J Bre. Soc. JAPAN. 2009; 104(11): 858-865. https://doi.org/10.6013/jbrewsocjapan.104.858.
DOI |
Google Scholar
29
-
Takahashi S, Yoshiya T, Yoshizawa K, Sugiyama T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed Res. 2015; 36(3): 219-24. https://doi.org/ 10.2220/biomedres.36.219.
DOI |
Google Scholar
30
-
Ho T, Wu S, Chen J, Li C, Hsiang C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007; 74(2): 92-101. https://doi.org/10.1016/j.antiviral.2006.04.014.
DOI |
Google Scholar
31
-
Luis E, Marta L, Enrique A, Damon D, Tim S, Ralph B. Vaccines to prevent severe acute respiratory syndrome coronavirusinduced disease. Virus Res. 2008; 133(1): 45-62. https://doi.org/10.1016/j.virusres.2007.01.021.
DOI |
Google Scholar
32
-
Paul A, Steven O., Stephan S., Allan N., Ray C., Joseph P. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003; 300(5624):1394-9 https://doi.org/10.1126/science.1085952.
DOI |
Google Scholar
33
-
Uzor P, Prasasty V, Agubata C. Natural Products as Sources of Antimalarial Drugs. Evid Base Complement Alternat Med. 2002; 2020: 9385125. https://doi.org/10.1155/2020/9385125.
DOI |
Google Scholar
34
-
Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A Promising Cure for the Global Panic. Sci Total Environ. 2020; 725: 138277. https://doi.org/ 10.1016/j.scitotenv.2020.138277.
DOI |
Google Scholar
35
-
Chen F, Chan K, Jiang Y, Kao R, Lu H, Fan K, Cheng V, Tsui W, Hung I, Lee T, Guan Y, Peiris J, Yuen K. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clini Virol. 2004; 31(1): 69–75. https://doi.org/10.1016/j.jcv.2004.03.003.
DOI |
Google Scholar
36
-
Ruocong Y, Hao L, Chen B, Yingchao W, Xiaohui Z, Rui G, Siying W, Jianxun W, Elaine L, Hang C, Peng L, Tiegang L, Yi W. Chemical Composition and Pharmacological Mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction Against Coronavirus Disease 2019 (COVID-19): In Silico and Experimental Study. Pharmacol Res 2020; 157: 104820. https://doi.org/10.1016/j.phrs.2020.104820.
DOI |
Google Scholar
37
-
Harald M. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection?. Front Immunol. 2020; 11:1239. https://doi.org/10.3389/fimmu.2020.01239.
DOI |
Google Scholar
38
-
Baltina LA, Kondratenko RM, Baltina J, Plyasunova OA, Pokrovskii AG, Tolstikov GA. Prospects for the Creation of New Antiviral Drugs Based on Glycyrrhizic Acid and Its Derivatives (A Review). Pharm Chem J. 2009; 43(10): 539-548. https://doi.org/ 10.1007/s11094-010-0348-2.
DOI |
Google Scholar
39
-
Yue D, Zeyu C, Liang C, Gang D, Zhengzhong W , Wei X. Antiviral Activity of Chlorogenic Acid Against Influenza A (H1N1/H3N2) Virus and Its Inhibition of Neuraminidase. Sci Rep. 2017 ;7 :45723. https://doi.org/ 10.1038/srep45723.
DOI |
Google Scholar
40