Article Main Content

The most prevalent form of cancer in females is breast cancer. Roughly 5%-10% of breast cancers are hereditary, and they are associated with Germline gene mutations, inherited from parents. Germline gene mutations increase the risk of developing cancer earlier in life compared to noninherited cases (sporadic cancer). BRCA1 and BRCA2 are well-studied tumour suppressor genes associated with hereditary breast cancer. Even though mutations in BRCA1 and BRCA2 are assumed to responsible the majority of hereditary breast cancers cases, many other breast cancer susceptibility genes have been identified in the last few decades. Identification of many germline mutations was possible due to advance sequencing technologies. Most of these genes are belongs to tumour suppressors and DNA damage repair gene families (DNA double-strand break repair and DNA mismatch repair). These genes play a vital role in genomic stability and cell cycle control suggesting that any alteration in these genes trigger uncontrolled growth and tumour formation. These genes are categorized according to the penetrance level, the proportion of carriers express the associated trait of the mutated gene. Mutations in high penetrance genes such as BRCA1, BRCA2, TP53, PTEN, and SKT11 greatly increase the risk of developing breast cancer. Moderate penetrance gene such as PALB2, ATM, CHEK2, BARD1, BRIP1 and low penetrance gene such as PARP4, CASP8, TOX3 confer moderate to low increase risk of developing breast cancer. Aim of this review is to summarize genes associated with hereditary breast cancer according to their penetrance level (high, moderate and low penetrance).

References

  1. V. Trevino. (Augest 2019). Integrative genomic analysis identifies associations of molecular alterations to APOBEC and BRCA1/2 mutational signatures in breast cancer. Mol Genet Genomic Med. 7(8): e810. Available: https://doi.org/10.1002/mgg3.810
    DOI  |   Google Scholar
  2. B. Vogelstein, N. Papadopoulos, V. Velculescu, S. Zhou, L. A. Diaz and K. W. Kinzler. (March 2013). Cancer Genome Landscapes. Science. 339(6127). pp. 1546-1558. Available: https://doi.org/10.1126/science.1235122
    DOI  |   Google Scholar
  3. T. Helleday, S. Eshtad and S. Nik‐Zainal. (July 2014). Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 15(9). pp. 585–598. Available: https ://doi.org/10.1038/nrg3729.
    DOI  |   Google Scholar
  4. N.D.W Dissanayake, "Clinical Characterization of a cohort of Sri Lankan families with inherited cancer syndrome", MSc, dissertation, University of Colombo, 2014.
     Google Scholar
  5. K. Kiwerska and K. Szyfter. (2019). DNA repair in cancer initiation, progression, and therapy - A double-edged sword. J Appl Genet. 60 (3-4) pp. 329-334. Available: https://doi.org/10.1007/s13353-019-00516-9
    DOI  |   Google Scholar
  6. G. Lippi, C. Mattiuzzi and M. Montagnana. (July 2017). BRCA population screening for predicting breast cancer: for or against? Ann Transl Med. 5(13). pp. 275-275, Available: https://doi.org/10.21037/atm.2017.06.71
    DOI  |   Google Scholar
  7. Y. Wu, F. Liu, S. Luo, X. Yin, D. He, J. Liu, Z. Yue and J. Song. (July 2019).Co-expression of key gene modules and pathways of human breast cancer cell lines. Biosci Rep. 39 (7). Available: https://doi.org/10.1042/BSR20181925
    DOI  |   Google Scholar
  8. S. Malvia, S. A. R. Bagadi, D. Pradhan, C. Chintamani, A. Bhatnagar, D. Arora, R. Sarin and S. Saxena. (July 2019). Study of Gene Expression Profiles of Breast Cancers in Indian Women. Sci Rep 9(10018). Available: https://doi.org/10.1038/s41598-019-46261-1.
    DOI  |   Google Scholar
  9. A. Fernando, U. Jayarajah, S. Prabashani, E. Fernando and S. Seneviratne. (April 2018). Incidence trends and patterns of breast cancer in Sri Lanka: an analysis of the national cancer database. BMC Cancer. 18(482). Available: https://doi.org/10.1186/s12885-018-4408-4
    DOI  |   Google Scholar
  10. P. Apostolou and F. Fostira. (March 2013). Hereditary Breast Cancer: The Era of New Susceptibility Genes. BioMed Res Int. Available: https://doi.org/10.1155/2013/747318
    DOI  |   Google Scholar
  11. N. Okumura, H. Yoshida, Y. Kitagishi, Y. Nishimura and S. Matsuda. (September 2011). Alternative splicings on p53, BRCA1 and PTEN genes involved in breast cancer. Biochem Biophys Res Commun. 413(3). pp.395-399. Available: https://doi.org/10.1016/j.bbrc.2011.08.098
    DOI  |   Google Scholar
  12. S. Shiovitz and L. A. Korde. (July 2015). Genetics of breast cancer: a topic in evolution. Ann Oncol. 26(7). pp. 1291-1299. Available: https://doi.org/10.1093/annonc/mdv022
    DOI  |   Google Scholar
  13. Z. Baretta, S. Mocellin, E. Goldin, O. Olopade and D. Huo. (October 2016). Effect of BRCA germline mutations on breast cancer prognosis. Medicine. 95(40). e4975. doi: 10.1097/md.0000000000004975
    DOI  |   Google Scholar
  14. J. D. Fackenthal and O. I. Olopade. (December 2007). Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer. 7(12) pp. 937-948. Available: https://doi.org/10.1038/nrc2054
    DOI  |   Google Scholar
  15. K. N. Maxwell and K. L. Nathanson. (December 2013). Common breast cancer risk variants in the post-COGS era: a comprehensive review. Breast Cancer Res. 15(6):212. Available: https://doi.org/10.1186/bcr3591
    DOI  |   Google Scholar
  16. U. O. Njiaju and O. I. Olopade. (September 2012). Genetic Determinants of Breast Cancer Risk: A Review of Current Literature and Issues Pertaining to Clinical Application. Breast J. 18(5). pp. 436-442. Available: https://doi.org/10.1111/j.1524-4741.2012.01274.x
    DOI  |   Google Scholar
  17. A. W. Kurian, K. E. Kingham and J. M. Ford. (February 2015). Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment. Curr Opin Obstet Gynecol. 27(1). pp. 23-33. Available: https://doi.org/10.1097/GCO.0000000000000141
    DOI  |   Google Scholar
  18. P. D. P Pharoah, A. Antoniou, M. Bobrow, R. L. Zimmern, D. F. Easton and B. A. J. Ponder. (May 2002). Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 31(1). pp. 33-36, 2002. Available: https://doi.org/10.1038/ng853
    DOI  |   Google Scholar
  19. W. D. Foulkes. (November 2008). Inherited Susceptibility to Common Cancers. N Engl J Med. 359(20). pp. 2143-2153. Available:https://doi.org/10.1056/NEJMra0802968
    DOI  |   Google Scholar
  20. K. N. Maxwell and S. M. Domchek. (September 2012). Cancer treatment according to BRCA1 and BRCA2 mutations. Nat Rev Clin Oncol. 9(9). pp. 520-528. Available: https://doi.org/10.1038/nrclinonc.2012.123
    DOI  |   Google Scholar
  21. A. Paul and S. Paul. (January 2014). The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers", Front Biosci (Landmark Ed). 19(4). pp. 605-618. 20. Available: https://doi.org/10.2741/4230
    DOI  |   Google Scholar
  22. M. J. Larsen, M. Thomassen, A. N. Gerdes and T. A. Kruse. (October 2014). Hereditary Breast Cancer: Clinical, Pathological and Molecular Characteristics. Breast Cancer (Auckl). 8. pp.145-155. Available: https://doi.org/10.4137/BCBCR.S18715
    DOI  |   Google Scholar
  23. W. Zhang and Y. Yu. (September 2011). The Important Molecular Markers on Chromosome 17 and Their Clinical Impact in Breast Cancer. Int J Mol Sci, 12(9). pp. 5672-5683. Available: https://doi.org/10.3390/ijms12095672
    DOI  |   Google Scholar
  24. F. Wang, Q. Fang, Z. Ge, N. Yu, S. Xu and X. Fan. (March 2012). Common BRCA1 and BRCA2 mutations in breast cancer families: a meta-analysis from systematic review. Mol Biol Rep. 39(3). pp. 2109-2118. Available: https://doi.org/10.1007/s11033-011-0958-0
    DOI  |   Google Scholar
  25. O. M. Valencia, S. E. Samuel, R. K. Viscusi, T. Riall, L. A. Neumayer and H. Aziz. (June 2017). The Role of Genetic Testing in Patients with Breast Cancer: A Review. JAMA Surg. vol. 152(6). pp. 589-594. Available: https://doi.org/10.1001/jamasurg.2017.0552.
    DOI  |   Google Scholar
  26. L. A. R. Oluwagbemiga, A. Oluwole and A. A. R. Kayode. (December 2012). Seventeen years after BRCA1: what is the BRCA mutation status of the breast cancer patients in Africa? – a systematic review", SpringerPlus. 1(1):83. Available: https://doi.org/10.1186/2193-1801-1-83
    DOI  |   Google Scholar
  27. M. Ratajska, E. Antoszewska, A. Piskorz, I. Brozek, A. Borg, H. Kusmierek, W. Biernat, and J. Limon. (2012). et al., "Cancer predisposing BARD1 mutations in breast-ovarian cancer families", Breast Cancer Res Treat. 131(1). pp.89-97. https://doi.org/10.1007/s10549-011-1403-8
    DOI  |   Google Scholar
  28. P. Economopoulou, G. Dimitriadis and A. Psyrri. (January 2015). Beyond BRCA: New hereditary breast cancer susceptibility genes. Cancer Treat Rev. 41(1), 1–8. https://doi.org/10.1016/j.ctrv.2014.10.008
    DOI  |   Google Scholar
  29. R. Roy, J. Chun and S. Powell. (December 2011). BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 12(1). pp. 68-78. Available: https://doi.org/10.1038/nrc3181
    DOI  |   Google Scholar
  30. N. M. Davis, M. Sokolosky, K. Stadelman, S. L. Abrams, M. Libra, S. Candido et al.(July 2014). Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget. 5(13). pp.4603-4650. Available: https://doi.org/10.18632/oncotarget.2209
    DOI  |   Google Scholar
  31. W. Zhang, A. Edwards, E. K. Flemington and K. Zhang (February 2017). Significant Prognostic Features and Patterns of Somatic TP53 Mutations in Human Cancers. Cancer Inform.16. Available: https://doi.org/10.1177/1176935117691267
    DOI  |   Google Scholar
  32. J. Huszno and E. Grzybowska. (July 2018). TP53 mutations and SNPs as prognostic and predictive factors in patients with breast cancer. Oncol Lett. 16(1). pp.34-40. Available: https://doi.org/10.3892/ol.2018.8627
    DOI  |   Google Scholar
  33. A. Patocs, L. Zhang, Y. Xu, F. Weber, T. Caldes, G. L. Mutter, P. Platzer and C. Eng. Breast-Cancer Stromal Cells withTP53Mutations and Nodal Metastases. N Engl J Med. 357(25). pp.2543–2551. https://doi.org/10.1056/NEJMoa071825
    DOI  |   Google Scholar
  34. M. Tischkowitz, B. Xia, N. Sabbaghian, J. S. Reis-Filho, N. Hamel, G. Li G, E. H. van Beers, L. Li, T. Khalil, L. A. Quenneville, A. Omeroglu, A. Poll, P. Lepage, N. Wong, P. M. Nederlof, A. Ashworth, P. N. Tonin, S. A. Narod, D. M. Livingston and W. D. Foulkes (April 2007). Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci U S A.104 (16). pp.6788-93. Available: https://doi.org/10.1073/pnas.0701724104
    DOI  |   Google Scholar
  35. N. Jones, F. Bonnet, S. Sfar, M. Lafitte, D. Lafon, G. Sierankowski, V. Brouste, G. Banneau, C. Tunon de Lara, M. Debled, G. MacGrogan, M. Longy and N. Sevenet. (July 2013). Comprehensive analysis of PTEN status in breast carcinomas. Int J Cancer. 133(2). pp.323-3. Available: https://doi.org/10.1002/ijc.28021
    DOI  |   Google Scholar
  36. H. Kobayashi, S. Ohno, Y. Sasaki and M. Matsuura. (June 2013). Hereditary breast and ovarian cancer susceptibility genes (Review). Oncol Rep, 30(3). 1019–1029. https://doi.org/10.3892/or.2013.2541
    DOI  |   Google Scholar
  37. A. D. Skol, M. M. Sasaki and K. Onel. October 2016). The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Res. 18(1):99. Available: https://doi.org/10.1186/s13058-016-0759-4
    DOI  |   Google Scholar
  38. E. Akisik, H. Yazici and N. Dalay. (January 2011). ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer. Mol Bio Rep. 38(1) pp. 343-348, 2010. Available: https://doi.org/10.1007/s11033-010-0113-3
     Google Scholar
  39. A. R. Venkitaraman. (January 2002). Cancer Susceptibility and the Functions of BRCA1 and BRCA2. Cell. 108(2) pp.171-182. DOI: 10.1016/s0092-8674(02)00615-3
    DOI  |   Google Scholar
  40. P. Peltomäki. Role of DNA Mismatch Repair Defects in the Pathogenesis of Human Cancer. J Clin Oncol. 21(6). pp. 1174-1179, March 2003.
    DOI  |   Google Scholar
  41. N. Tung, C. Battelli, B. Allen, R. Kaldate, S. Bhatnagar, K. Bowles, K. Timms, J. E. Garber, C. Herold, L. Ellisen, J. Krejdovsky, K. DeLeonardis, K. Sedgwick, K. Soltis, B. Roa, R. J. Wenstrup and A. R. Hartman. (January 2015). Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer, 121(1). pp. 25–33. Available: https://doi.org/10.1002/cncr.29010
    DOI  |   Google Scholar
  42. A. C. Antoniou, W. D. Foulkes and M. A. Tischkowitz. (October 2014). Breast-Cancer Risk in Families with Mutations in PALB2. N Engl J Med. 371(17). pp.1651-1652. Available: https://doi.org/10.1056/NEJMc1410673
    DOI  |   Google Scholar
  43. B. Decker, J. Allen, C. Luccarini, K. A. Pooley, M. Shah, M. K. Bolla, Q. Wang, S. Ahmed, C. Baynes, D. M. Conroy, J. Brown, R. Luben, E. A. Ostrander, P. D. Pharoah, A. M. Dunning and D. F. Easton (November 2017). Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J Med Genet. 54(11). pp. 732–741. Available: https://doi.org/10.1136/jmedgenet-2017-104588
    DOI  |   Google Scholar
  44. A. Desrichard, Y. Bidet, N. Uhrhammer and Y. Bignon. (November 2011)CHEK2 contribution to hereditary breast cancer in non-BRCAfamilies. Breast Cancer Res. 13(6). Available: https://doi.org/10.1186/bcr3062
    DOI  |   Google Scholar
  45. A. W. Kurian, E Hughes, E. A. Handorf, A. Gutin, B. Allen, A. R. Hartman and M. J. Hall. (June 2017). Breast and Ovarian Cancer Penetrance Estimates Derived From Germline Multiple-Gene Sequencing Results in Women. JCO Precis Oncol, 1. pp. 1-12. DOI: 10.1200/po.16.00066.
    DOI  |   Google Scholar
  46. A. Venkateshwari, D. W. Clark, P. Nallari, C. Vinod, T. Kumarasamy, G. Reddy, A. Jyothy, M. V. Kumar, R. Ramaiyer and K. Palle. (March 2017). BRIP1/FANCJMutation Analysis in a Family with History of Male and Female Breast Cancer in India. J Breast Cancer. 20(1). pp.104–107. https://doi.org/10.4048/jbc.2017.20.1.104.
    DOI  |   Google Scholar
  47. K. Heikkinen, K. Rapakko, S. H. Karppinen, H Erkko, S. Knuutila, T. Lundán, A. Mannermaa, A. L. Børresen-Dale, A. Borg, R. B. Barkardottir, J. Petrini, and R. Winqvist (August 2006). RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis, 27(8) pp. 1593–1599. Available: https://doi.org/10.1093/carcin/bgi360
    DOI  |   Google Scholar
  48. F. S. Hilbers, J. T. Wijnen, N. Hoogerbrugge, J. C. Oosterwijk, M. J. Collee, P. Peterlongo, P. Radice, S. Manoukian, I. Feroce, F. Capra, F. J. Couch, X. Wang, L. Guidugli, K. Offit, S. Shah, I. G. Campbell, E. R. Thompson, P. A. James, A. H. Trainer, J. Gracia, J Benitez, C. J. van Asperen and P. Devilee. (October 2012). Rare variants in XRCC2 as breast cancer susceptibility alleles. J Med Genet. 49(10). pp. 618-20. Available: https://doi.org/10.1136/jmedgenet-2012-101191
    DOI  |   Google Scholar
  49. R. Das, S. Kundu, S. Laskar, Y. Choudhury and S. K. Ghosh. (July 2018). Assessment of DNA repair susceptibility genes identified by whole exome sequencing in head and neck cancer. DNA Repair(Amst). 66-67. pp. 50-63. Available: https://doi.org/10.1016/j.dnarep.2018.04.005
    DOI  |   Google Scholar
  50. N. Mavaddat, A. C. Antoniou, D. F. Easton and M. Garcia-Closas. (June 2010). Genetic susceptibility to breast cancer. Mol Oncol. 4(3). pp. 174-191. Available: https://doi.org/10.1016/j.molonc.2010.04.011
    DOI  |   Google Scholar