A Silent Attacker SARS-CoV-2 - A Review
Article Main Content
The recent coronavirus (known as COVID-19 or SARS-CoV-2) has created a pandemic of unheard proportions affecting virtually every country and region of the world. As of April 15, 2020 the virus has resulted in over 2 million infections, and over 100,000 deaths and has brought world economic activities to a standstill, and has led to social isolation and massive unemployment with possible economic recessions on an unprecedented scale around the corner. Till now, the virus shows no signs of abatement. Also till now, scientists have not been able to come out with an effective drug or vaccine against the virus. This review attempts to give a comprehensive view of the origin of the virus, the mode of its entry and infecting human beings, and further discusses the possibility of new drugs and vaccines against the virus.
References
-
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223):470-473. doi: 10.1016/S0140-6736(20)30185-9.
DOI |
Google Scholar
1
-
Rahman S, Bahar T. COVID-19: The New Threat. International Journal of Infection, 2020, 7(1):e102184. doi: 10.5812/iji.102184.
DOI |
Google Scholar
2
-
Worldometer. https://www.worldometers.info/coronavirus/. Accessed on 15th April, 2020.
Google Scholar
3
-
Sahin AR, Erdogan A, Agaoglu PM, Dineri Y, Cakirci AY, Senel ME, Okyay RA, Tasdogan AM. 2019 Novel corona virus (COVID-19) outbreak: A review of the current literature. Eurasian Journal of Medicine and Oncology, 2020; 4(1): 1-7. doi: 10.14744/ejmo.2020.12220.
DOI |
Google Scholar
4
-
Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses 2010, 2, 1804-1820; doi:10.3390/v2081803.
DOI |
Google Scholar
5
-
Kannan S, Ali PSS, Sheeza A, Hemalatha K. COVID-19(Novel coronavirus 2019)- recent trends. European Review for Medical and Pharmacological Sciences, 2020, 24: 2006-2011.
Google Scholar
6
-
McBride R, Marjorie van Zyl, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8): 2991-3018.
DOI |
Google Scholar
7
-
Rottier P.J.M. (1995), The Coronavirus Membrane Glycoprotein. In: Siddell S.G. (eds) The Coronaviridae. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1531-3_6.
DOI |
Google Scholar
8
-
Li F. Structure, function and evolution of coronavirus spike proteins. The Annual Review of Virology, 2016, 3, 237-261.
DOI |
Google Scholar
9
-
Coronavirus: 7 types of human coronavirus https://en.as.com/en/2020/03/27/other_sports/1585319003_056685.html. Accessed on 16th April, 2020.
Google Scholar
10
-
Hassan S, Sheikh FN, Jamal s, Ezeh JK, Akhter A. Coronavirus (COVID-19): A review of clinical features, diagnosis, and treatment.Cureus 12(3): e7355. Doi:10.7759/cureus.7355.
DOI |
Google Scholar
11
-
Wu Y, Ho W, Huang Y, Dong-Yan J, Li S, Shan-Lu L, Liu X, Qiu J, Sang Y, Wang Q, Kwok-Yung Y, Zhi-Ming Z. SARS-CoV-2 is the appropriate name for the coronavirus. The Lancet, 2020, 395(10228): P949-P950. Doi:https://doi.org/10.1016/S0140-6736(20)30557-2.
DOI |
Google Scholar
12
-
Foley KE. The coronavirus’s survival mechanism is what makes it so dangerous. QUARTZ. https://qz.com/1822554/how-the-coronavirus-tricks-cells-into-a-full-body-invasion/.
Google Scholar
13
-
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science 12, 8 (2020). Doi: https://doi.org/10.1038/s41368-020-0074-x.
DOI |
Google Scholar
14
-
Clarke NE, Turner AJ. Angiotensine-converting enzyme 2: The first decade. International Journal of Hypertension 2012, V-2012; Art.ID-307315. doi:10.1155/2012/307315.
DOI |
Google Scholar
15
-
Hamming I, Timens W, Bulthuis M, Lely T, Navis G, Goor HV. Tissue distribution of ACE2 protein, the functional receptor for SARS Coronavirus. Journal of Pathology 2004, 203(2): 631-637.
DOI |
Google Scholar
16
-
Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine 2020, doi: 10.7326/M20-0504
DOI |
Google Scholar
17
-
He J, Tao H, Yan Y, Sheng-You H, Xiao Y. Molecular mechanisms of evolution and human infection with SARS-CoV-2. Viruses 2020, 12, 428.
DOI |
Google Scholar
18
-
Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res.2017, 27, 119–129.
DOI |
Google Scholar
19
-
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454.
DOI |
Google Scholar
20
-
Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018, 14, e1007236
DOI |
Google Scholar
21
-
Gracia-Ramos AE. Is the ACE2 overexpression a risk factor for COVID-19 infection? Archives of Medical Research 2020. doi: 10.1016/j.arcmed.2020.03.011.
DOI |
Google Scholar
22
-
Jia PH, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray Jr. PB. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. Journal of virology 2005, 79(23): 14614-14621.
DOI |
Google Scholar
23
-
Adhikari SP, Meng S, Yu-Ju W, Yu-Ping M, Rui-Xue Y, Qing-Zhi W, Sun C, Sylvia S, Rozelle S, Raat H, Zhou H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious diseases of poverty 2020. 9(29). https://doi.org/10.1186/s40249-020-00646-x.
DOI |
Google Scholar
24
-
Liu T, Hu J, Kang M, Lin L, Zhong H, Xiao J, He G, Song T, Huang Q, Rong Z, Deng A, Zeng W, Tan X, Zeng X, Zhu Z, Li J, Wan D, Lu J, Deng H, He J, Ma W.. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). bioRxiv 2020; doi: https://doi.org/10.1101/2020.01.25.919787.
DOI |
Google Scholar
25
-
] Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine. 2020. https://doi.org/10.1056/NEJMoa2001316.
DOI |
Google Scholar
26
-
He Y, Zheng C. Replication and transmission mechanisms of highly pathogenic human coronaviruses. Zheijiang Da Xue Xue Bao YiXue Ban 2020, 49(1). https://www.ncbi.nlm.nih.gov/pubmed/32298055.
Google Scholar
27
-
Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International 2020. 139:105730. doi: 10.1016/j.envint.2020.105730.
DOI |
Google Scholar
28
-
Meselson M. Droplets and Aerosols in the transmission of SARS-CoV-2. The New England Journal of Medivine 2020. doi: 10.1056/NEJMc2009324.
DOI |
Google Scholar
29
-
Shivhare SB, Lash EG. Chapter114- Immunity at the maternal-fetal interface. Mucosal Immunology (Fourth Edition) 2015, 2: 2231-2250.
DOI |
Google Scholar
30
-
Li M, Chen L, Zhang J, Xiong C, Li X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single cell transcriptome study. PLoS One 2020, 15 (4): e0230295. doi: 10.1371/journal.pone.0230295.
DOI |
Google Scholar
31
-
de Niet A, Waanders BL, Walraven I. The role of children in the transmission of mild SARS-CoV-2 infection. Acta Paediatrica 2020. doi: 10.1111/apa.15310.
DOI |
Google Scholar
32
-
Singhal T. A review of coronavirus disease-2019 (COVID-19). The Indian Journal of Pediatrics 2020. https://doi.org/10.1007/s12098-020-03263-6.
DOI |
Google Scholar
33
-
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
DOI |
Google Scholar
34
-
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020, 395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7.
DOI |
Google Scholar
35
-
Xu X, Yu C, Qu J, Zhang L, Jiang S, Huang D, Chen B, Zhang Z, Guan W, Ling Z, Jiang R, Hu T, Ding Y, Lin L, Gan Q, Luo L, Tang X, Liu J. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. European Journal of Nuclear Medicine and Molecular Imaging 2020, 47(5):1275-1280. doi: 10.1007/s00259-020-04735-9.
DOI |
Google Scholar
36
-
Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatric Pulmonology 2020, 55(5):1169-1174. doi: 10.1002/ppul.24718.
DOI |
Google Scholar
37
-
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus diseases 2019 (COVID-19). Journal of General Internal Medicine 2020, doi: 10.1007/s11606-020-05762-w.
DOI |
Google Scholar
38
-
Shoenfeld Y. Corona (COVID-19) time musing: Our involvement in COVID-19 pathogenecies, diagnosis, treatment and vaccine planning. Autoimmunity Reviews 2020, 102538. doi: 10.1016/j.autrev.2020.102538.
DOI |
Google Scholar
39
-
Kokkinakis I, Selby K, Favrat B, Genton B, Cornuz J. Covid-19 dagnosis: clinical recommendations and performance of nasopharyngeal swab-PCR. Revue Medicale Suisse 2020, 16(689):699-701.
DOI |
Google Scholar
40
-
Unhale SS, Ansar QB, Sanap S, Thakhre S, Wadatkar S, Bairagi R, Sagrule S, Biyani KR. A review on coronavirus (COVID-19). World Journal of Pharmaceutical and Life Sciences 2020, 6(4): 109-115.
Google Scholar
41
-
World Health Organization. (2020). Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020. https://apps.who.int/iris/handle/10665/331329
Google Scholar
42
-
Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol. 2020. [PMID: 32203294] doi:10.1038/d41587-020-00010-2.
DOI |
Google Scholar
43
-
Prendergast C, Papenburg J. Rapid antigen-based testing for respiratory syncytial virus: moving diagnostics from bench to bedside? Future Microbiol. 2013;8:435-44. [PMID: 23534357] doi:10.2217/fmb.13.9.
DOI |
Google Scholar
44
-
Cheng MP, Papenburg J, Desjardins M, Kanjilal S4, Quach C, Libman M, Dittrich S, Yansouni CP. Diagnostic testing for severe acute respiratory syndrome-related coronavirus-2: a narrative review. Annals of Internal Medicine 2020, doi: 10.7326/M20-1301.
DOI |
Google Scholar
45
-
Zhang Z, Shen Y, Wang H, Zhao L, Hu D. High-resolution computed tomographic imaging disclosing COVID-19 pneumonia: a powerful tool in diagnosis. The Journal of Infection 2020, pii: S0163-4453(20)30178-X. doi: 10.1016/j.jinf.2020.03.047.
DOI |
Google Scholar
46
-
World Health Organization 2020. Clinical management of severe acute respiratory infection when COVID-19 is suspected. 13 March, 2020. Reference Number: WHO/2019-nCoV/clinical/2020.4. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
Google Scholar
47
-
National Health Commission of the People’s Republic of China. Notice on the issunance of guidelines of diagnosis and treatment for 2019-nCoV infected pneumonia (version 6). 6 ed; http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7da8aefc2.shtml?from=timeline. 2020.
Google Scholar
48
-
Yang Y, Islam SM, Wang J, Li Y, Chen X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): a Review and Perspective. International Journal of Biological Sciences 2020; 16(10): 1708-1717. doi: 10.7150/ijbs.45538.
DOI |
Google Scholar
49
-
Mitza O, Clotet B. Use of antiviral drugs to reduce COVID-19 transmission. The Lancet Global Health 2020, DOI:https://doi.org/10.1016/S2214-109X(20)30114-5.
DOI |
Google Scholar
50
-
Ye XT, Luo YL, Xia SC, Sun QF, Ding JG, Zhou Y, Chen W, Wang XF, Zhang WW, Du WJ, Ruan ZW, Hong L. Clinical efficacy of lopinavir/ritonavir in the treatment of coronavirus disease 2019. European Review for Medical and Pharmacological Sciences 2020, 24(6):3390-3396. doi: 10.26355/eurrev_202003_20706.
Google Scholar
51
-
Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. The Lancet Infectious Diseases 2020, 20(4): P400-402.
DOI |
Google Scholar
52
-
Bizzarri M, Laganà AS, Aragona D, Unfer V. Inositol and pulmonary function. Could myo-Inositol downregulate inflammation and cytokine release syndrome in SARS-CoV-2? European Review for Medical and Pharmacological Sciences 2020, 24(6):3426-3432. doi: 10.26355/eurrev_202003_20715.
Google Scholar
53
-
Tchesnokov PE, Feng JY, Porter DP, Götte M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 2019, 11(326). doi:10.3390/v11040326.
DOI |
Google Scholar
54
-
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020, 30(3): 269-271. doi: 10.1038/s41422-020-0282-0.
DOI |
Google Scholar
55
-
Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A et.al. Compassionate use of remdesivir for patients with severe COVID-19. The New England Journal of Medicine 2020, doi: 10.1056/NEJMoa2007016.
DOI |
Google Scholar
56
-
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in the treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends 2020, 14(1):72-73. doi: 10.5582/bst.2020.01047.
DOI |
Google Scholar
57
-
Moore, N. Chloroquine for COVID-19 Infection. Drug Safety 43, 393–394 (2020). https://doi.org/10.1007/s40264-020-00933-4
DOI |
Google Scholar
58
-
Slater AF. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacology Therapy 1993, 57(2-3): 203-235. Doi: 10.1016/0163-7258(93)90056-j.
DOI |
Google Scholar
59
-
Gautret et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID‐19: results of an open‐label non‐randomized clinical trial. International Journal of Antimicrobial Agents – In Press 17 March 2020 – DOI : 10.1016/j.ijantimicag.2020.105949.
DOI |
Google Scholar
60
-
Jiun-Ji S, Jim-Min F. Development of effective anti-influenza drugs: congeners and conjugates- a review. The Journal of Biomedical Science 2019, 26:84, doi: 10.1186/s12929-019-0567-0.
DOI |
Google Scholar
61
-
Costanzo M, De Giglio MAR, Roviello GN. SARS CoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and Other Drugs for the Treatment of the New Coronavirus. Current Medicinal Chemistry 2020, doi: 10.2174/0929867327666200416131117.
DOI |
Google Scholar
62
-
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et.al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. The New England Journal of Medicine 2020, DOI: 10.1056/NEJMoa2001282.
DOI |
Google Scholar
63
-
Baden LR and Rubin EJ. Covid-19 — The search for effective therapy. The New England Journal of Medicine 2020 Mar 18; [e-pub]. (https://doi.org/10.1056/NEJMe2005477).
DOI |
Google Scholar
64
-
Kutlu Ö, Metin A. (2020). A case of exacerbation of psoriasis after oseltamivir and hydroxychloroquine in a patient with COVID-19: Will cases of psoriasis increase after COVID-19 pandemic? Dermatologic Therapy, e13383. doi:10.1111/dth.13383.
DOI |
Google Scholar
65
-
Kassi EN, Papavassiliou K A, Papavassiliou AG. (2020). G6PD and chloroquine: selecting the treatment against SARS-CoV-2? Journal of Cellular and Molecular Medicine. doi:10.1111/jcmm.15312.
DOI |
Google Scholar
66
-
Zhan WQ, Li MD, Xu M, Lu YB. Successful treatment of COVID-19 using extracorporeal membrane oxygenation, a case report. European Review for Medical and Pharmacological Sciences 2020, 24(6):3385-3389. doi: 10.26355/eurrev_202003_20705.
Google Scholar
67
-
Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Research 2020, 178:104791. doi: 10.1016/j.antiviral.2020.104791.
DOI |
Google Scholar
68
-
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. Published online April 13, 2020. doi:10.1001/jama.2020.6019.
DOI |
Google Scholar
69
-
Gallagher J. Coronavirus: Are we getting closer to a vaccine or drug. BBC News. https://www.bbc.com/news/health-51665497. Accessed on 20th April, 2020.
Google Scholar
70
-
Ryan J. Coronavirus treatments: hydroxychloroquine, vaccines and drugs for COVID-19. https://www.cnet.com/how-to/coronavirus-treatments-hydroxychloroquine-vaccines-and-drugs-for-covid-19/. Accessed on 20th April, 2020.
Google Scholar
71
-
Medscape. Oxford COVID-19 Vaccine Trial ‘Within Weeks’ : Q&A. https://www.medscape.com/viewarticle/928941. Accessed on 21th April, 2020.
Google Scholar
72
-
Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: present and future. Stem Cell Reviews and Reports 2020, doi: 10.1007/s12015-020-09973-w.
DOI |
Google Scholar
73
-
Jo S, Kim S, Shin DH, Kim M.-S. Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry 2020, 35(1):145-151. https://doi.org/10.1080/14756366.2019.1690480.
DOI |
Google Scholar
74
-
Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Jin R, Zheng Y et.al. Diagnosis, treatment and prevention of 2019 novel coronavirus infection in children: expert’s consensus statement. World Journal of Pediatrics 2020, DOI: 10.1007/s12519-020-00343-7.
DOI |
Google Scholar
75