##plugins.themes.bootstrap3.article.main##

Oesophageal squamous cell carcinoma (OESCC) is a poor prognosis cancer with current treatments demonstrating limited efficacy. Recently, the field of epigenetics has gained equal importance to that of genetics in cancer, including in oesophageal cancer. The increasing number of epigenetic drugs is driving the need to identify the most efficacious and potent of these drugs in various cancers. This study investigated both the metabolic activity and importantly, the long-term cytotoxic effects of different families of epigenetic drugs including DNA methyltransferase inhibitors (DNMTi: azacitidine, 5-aza-2ʹ-deoxycytidine, 5-fluoro-2ʹ-deoxycytidine, RG108, procaine hydrochloride, zebularine), histone deacetylase inhibitors (HDACi: valproic acid, panobinostat, vorinostat, belinostat, romidepsin, RGFP966 and santacruzamate A) and bromodomain and extra-terminal motif inhibitors (BETi: JQ1, OTX015, I-BET151A and I-BET762) in OESCC cells (KE-8 and KYSE-450) as well as non-neoplastic oesophageal epithelial cells (HET-1A). Effects on metabolic activity were measured using the MTT bio-reduction assay, while cytotoxic effects were assessed using the long-term clonogenic assay. Dose-dependent effects were observed with specific drugs from all three classes of epigenetic drugs. OESCC cells were most vulnerable to the FDA approved drugs (valproic acid, panobinostat, vorinostat, belinostat and romidepsin) in both the MTT bio-reduction and clonogenic assays. Interestingly, the non-neoplastic HET-1A epithelial cells demonstrated resistance to some DNMTi and HDACi drugs at concentrations that were cytotoxic to OESCC. Thus, our findings have identified a subset of epigenetic drugs that can impair the metabolic activity of OESCC and importantly, are cytotoxic. This may aid in the design of future therapeutic regimes for treatment of this drug resistant cancer.

Downloads

Download data is not yet available.

References

  1. Lin L, Lin DC. Biological Significance of Tumor Heterogeneity in Esophageal Squamous Cell Carcinoma. Cancers (Basel). 2019; 11(8).
    DOI  |   Google Scholar
  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65(2): 87-108.
    DOI  |   Google Scholar
  3. Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017; 390(10110): 2383-96.
    DOI  |   Google Scholar
  4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-a Cancer Journal for Clinicians. 2021; 71(3): 209-49.
    DOI  |   Google Scholar
  5. Foley KG, Hills RK, Berthon B, Marshall C, Parkinson C, Lewis WG, et al. Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. Eur Radiol. 2018; 28(1): 428-36.
    DOI  |   Google Scholar
  6. Catenacci DVT, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ilson DH, et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017; 18(11): 1467-82.
    DOI  |   Google Scholar
  7. Anderson LA, Tavilla A, Brenner H, Luttmann S, Navarro C, Gavin AT, et al. Survival for oesophageal, stomach and small intestine cancers in Europe 1999-2007: Results from EUROCARE-5. European Journal of Cancer. 2015; 51(15): 2144-57.
    DOI  |   Google Scholar
  8. You JS, Jones PA. Cancer Genetics and Epigenetics: Two Sides of the Same Coin? Cancer Cell. 2012; 22(1): 9-20.
    DOI  |   Google Scholar
  9. Chen Y, Liao LD, Wu ZY, Yang Q, Guo JC, He JZ, et al. Identification of key genes by integrating DNA methylation and next-generation transcriptome sequencing for esophageal squamous cell carcinoma. Aging (Albany NY). 2020; 12(2): 1332-65.
    DOI  |   Google Scholar
  10. Ahrens TD, Werner M, Lassmann S. Epigenetics in esophageal cancers. Cell Tissue Res. 2014; 356(3): 643-55.
    DOI  |   Google Scholar
  11. Kim J, Bowlby R, Mungall AJ, Robertson AG, Odze RD, Cherniack AD, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017; 541(7636): 169-75.
    DOI  |   Google Scholar
  12. Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD. Epigenetic therapy in immune-oncology. Nat Rev Cancer. 2019; 19(3): 151-61.
    DOI  |   Google Scholar
  13. Yang XJ, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends in Pharmacological Sciences. 2010; 31(11): 536-46.
    DOI  |   Google Scholar
  14. Hoy SM. Tazemetostat: First Approval. Drugs. 2020; 80(5): 513-21.
    DOI  |   Google Scholar
  15. Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol. 2020; 17(2): 91-107.
    DOI  |   Google Scholar
  16. Wright J. EPIGENETICS Reversible tags. Nature. 2013; 498(7455): S10-S1.
    DOI  |   Google Scholar
  17. Baylin SB, Jones PA. Epigenetic Determinants of Cancer. Cold Spring Harbor Perspectives in Biology. 2016; 8(9).
    DOI  |   Google Scholar
  18. Brock MV, Herman JG, Baylin SB. Cancer as a manifestation of aberrant chromatin structure. Cancer Journal. 2007; 13(1): 3-8.
    DOI  |   Google Scholar
  19. Berglund A, Putney RM, Hamaidi I, Kim S. Epigenetic dysregulation of immune-related pathways in cancer: bioinformatics tools and visualization. Experimental and Molecular Medicine. 2021; 53(5): 761-71.
    DOI  |   Google Scholar
  20. Wu Q, Yang ZP, Nie YZ, Shi YQ, Fan DM. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Letters. 2014; 347(2): 159-66.
    DOI  |   Google Scholar
  21. Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Seminars in Cancer Biology. 2018; 51: 149-59.
    DOI  |   Google Scholar
  22. Wilting RH, Dannenberg JH. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resistance Updates. 2012; 15(1-2): 21-38.
    DOI  |   Google Scholar
  23. Zhou JB, Kang Y, Chen L, Wang H, Liu JQ, Zeng S, et al. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Frontiers in Pharmacology. 2020; 11.
    DOI  |   Google Scholar
  24. Menyhart O, Harami-Papp H, Sukumar S, Schafer R, Magnani L, de Barrios O, et al. Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochimica Et Biophysica Acta-Reviews on Cancer. 2016; 1866(2): 300-19.
    DOI  |   Google Scholar
  25. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315-9. PubMed PMID: 17406473. Epub 2007/04/05. eng.
    DOI  |   Google Scholar
  26. Courtenay VD, Mills J. In vitro colony assay for human tumors grown in immune-suppressed mice and treated in vivo with cytotoxic agents. British Journal of Cancer. 1978; 37(2): 261-8.
    DOI  |   Google Scholar
  27. O’Callaghan C, Fanning LJ, Houston A, Barry OP. Loss of p38δ mitogen-activated protein kinase expression promotes oesophageal squamous cell carcinoma proliferation, migration and anchorage-independent growth. Int J Oncol. 2013; 43: 405-15.
    DOI  |   Google Scholar
  28. O'Donovan TR, O'Sullivan GC, McKenna SL. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy. 2011; 7(5): 509-24.
    DOI  |   Google Scholar
  29. Gailhouste L, Liew LC, Hatada I, Nakagama H, Ochiya T. Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death & Disease. 2018; 9.
    DOI  |   Google Scholar
  30. Zhao QY, Fan JD, Hong W, Li LY, Wu M. Inhibition of cancer cell proliferation by 5-fluoro-2 '-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. Springerplus. 2012; 1.
    DOI  |   Google Scholar
  31. Shoji M, Ninomiya I, Makino I, Kinoshita J, Nakamura K, Oyama K, et al. Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in esophageal squamous cell carcinoma. International Journal of Oncology. 2012; 40(6): 2140-6.
    DOI  |   Google Scholar
  32. Cheng YW, Liao LD, Yang Q, Chen Y, Nie PJ, Zhang XJ, et al. The histone deacetylase inhibitor panobinostat exerts anticancer effects on esophageal squamous cell carcinoma cells by inducing cell cycle arrest. Cell Biochemistry and Function. 2018; 36(8): 398-407.
    DOI  |   Google Scholar
  33. LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. Bmc Medical Genomics. 2009; 2.
    DOI  |   Google Scholar
  34. Chan D, Zheng Y, Tyner JW, Chng WJ, Chien WW, Gery S, et al. Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer. Journal of Cancer Research and Clinical Oncology. 2013; 139(9): 1507-14.
    DOI  |   Google Scholar
  35. Valdez BC, Brammer JE, Li Y, Murray D, Liu Y, Hosing C, et al. Romidepsin targets multiple survival signaling pathways in malignant T cells. Blood Cancer Journal. 2015; 5.
    DOI  |   Google Scholar
  36. Perez-Salvia M, Simo-Riudalbas L, Llinas-Arias P, Roa L, Setien F, Soler M, et al. Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer. Oncotarget. 2017; 8(31): 51621-9.
    DOI  |   Google Scholar
  37. Coude MM, Braun T, Berrou J, Dupont M, Bertrand S, Masse A, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015; 6(19): 17698-712.
    DOI  |   Google Scholar
  38. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011; 478(7370): 529-33.
    DOI  |   Google Scholar
  39. Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. 2015; 574(2): 193-203.
    DOI  |   Google Scholar
  40. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011; 144(5): 646-74.
    DOI  |   Google Scholar
  41. Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R, et al. 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther. 2005; 312(2): 525-36.
    DOI  |   Google Scholar
  42. Amnekar RV, Khan SA, Rashid M, Khade B, Thorat R, Gera P, et al. Histone deacetylase inhibitor pre-treatment enhances the efficacy of DNA-interacting chemotherapeutic drugs in gastric cancer. World Journal of Gastroenterology. 2020; 26(6): 598-613.
    DOI  |   Google Scholar
  43. Kawada K, Yonei T, Ueoka H, Kiura K, Tabata M, Takigawa N, et al. Comparison of chemosensitivity tests: clonogenic assay versus MTT assay. Acta Med Okayama. 2002; 56(3): 129-34.
     Google Scholar
  44. Perez RP, Godwin AK, Handel LM, Hamilton TC. A comparison of clonogenic, microtetrazolium and sulforhodamine-b assays for determination of cisplatin cytotoxicity in human ovarian-carcinoma cell-lines. European Journal of Cancer. 1993; 29A(3): 395-9.
    DOI  |   Google Scholar
  45. Ahrens TD, Timme S, Hoeppner J, Ostendorp J, Hembach S, Follo M, et al. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics. 2015; 10(5): 431-45.
    DOI  |   Google Scholar
  46. Ma JF, Guo XB, Zhang SJ, Liu HC, Lu J, Dong ZM, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and promotes apoptosis of esophageal squamous cell lines. Molecular Medicine Reports. 2015; 11(6): 4525-31.
    DOI  |   Google Scholar
  47. Furutani A, Sowa Y, Fujiwara H, Otsuji E, Sakai T. The novel HDAC inhibitor OBP-801/YM753 enhances the effects of 5-fluorouracil with radiation on esophageal squamous carcinoma cells. Oncol Res. 2014; 21(5): 281-6.
    DOI  |   Google Scholar
  48. Lohse I, Al-Ali H, Volmar CH, Trotta ADA, Brothers SP, Capobianco AJ, et al. Ex vivo drug sensitivity testing as a means for drug repurposing in esophageal adenocarcinoma. Plos One. 2018; 13(9).
    DOI  |   Google Scholar
  49. Sigalotti L, Fratta E, Coral S, Cortini E, Covre A, Nicolay HJM, et al. Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. Journal of Cellular Physiology. 2007; 212(2): 330-44.
    DOI  |   Google Scholar
  50. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007; 12(10): 1247-52.
    DOI  |   Google Scholar
  51. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone Deacetylase Inhibitors as Anticancer Drugs. International Journal of Molecular Sciences. 2017; 18(7).
    DOI  |   Google Scholar
  52. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. Journal of Clinical Investigation. 2014; 124(1): 30-9.
    DOI  |   Google Scholar
  53. Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(3): 673-8.
    DOI  |   Google Scholar
  54. Lee JH, Choy ML, Ngo L, Foster SS, Marks PA. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107(33): 14639-44.
    DOI  |   Google Scholar
  55. Akbarzadeh L, Moini Zanjani T, Sabetkasaei M. Comparison of Anticancer Effects of Carbamazepine and Valproic Acid. Iran Red Crescent Med J. 2016; 18(10).
    DOI  |   Google Scholar
  56. Catalano MG, Fortunati N, Pugliese M, Costantino L, Poli R, Bosco O, et al. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab. 2005; 90(3): 1383-9.
    DOI  |   Google Scholar
  57. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008; 34(3): 206-22.
    DOI  |   Google Scholar
  58. Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, et al. Valproic acid: growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck. 2012; 34(3): 344-53.
    DOI  |   Google Scholar
  59. Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther. 2005; 4(12): 1912-22.
    DOI  |   Google Scholar
  60. Mawatari T, Ninomiya I, Inokuchi M, Harada S, Hayashi H, Oyama K, et al. Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol. 2015; 47(6): 2073-81.
    DOI  |   Google Scholar
  61. Bolden JE, Shi W, Jankowski K, Kan CY, Cluse L, Martin BP, et al. HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death & Disease. 2013; 4.
    DOI  |   Google Scholar
  62. Dai XP, Gan WJ, Li XN, Wang SQ, Zhang W, Huang L, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nature Medicine. 2017; 23(9).
    DOI  |   Google Scholar
  63. Leal AS, Williams CR, Royce DB, Pioli PA, Sporn MB, Liby KT. Bromodomain inhibitors, JQ1 and I-BET 762, as potential therapies for pancreatic cancer. Cancer Letters. 2017; 394: 76-87.
    DOI  |   Google Scholar
  64. Issa JPJ, Kantarjian HM. Targeting DNA Methylation. Clinical Cancer Research. 2009; 15(12): 3938-46.
    DOI  |   Google Scholar
  65. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science. 2017; 357(6348).
    DOI  |   Google Scholar
  66. Lima SCS, Hernandez-Vargas H, Simao T, Durand G, Kruel CDP, Le Calvez-Kelm F, et al. Identification of a DNA methylome signature of esophageal squamous cell carcinoma and potential epigenetic biomarkers. Epigenetics. 2011; 6(10): 1217-27.
    DOI  |   Google Scholar