Prevalence of Chikungunya and Scrub Typhus Coinfection among Dengue Negative Patients in Kolkata, India-A Newly Emerging Public Health Hazard
##plugins.themes.bootstrap3.article.main##
The chikungunya virus (CHIKV) and scrub typhus infection has scattered worldwide creating human health hazards in India and Asia specific region. We aimed to identify chikungunya, scrub typhus, and their co-infection in dengue-negative samples having undifferentiated febrile illnesses.
Enzyme linked immunosorbent assay (ELISA) methods were used to detect the chikungunya and scrub typhus specific IgM antibody by using chikungunya IgM capture ELISA kit and scrub typhus IgM Microlisa ELISA kit, respectively. OD value was measured with the help of BeneSphera (India) ELISA microplate reader.
Among 490 suspected patients, 57 (11.63%) samples were tested positive for chikungunya IgM antibodies, while 43 (8.77%) came positive for scrub typhus IgM antibodies, but all samples tested negative for dengue IgM antibodies. Additionally, 5% of the total positive cases were positive for both chikungunya and scrub typhus infection.
Our study offers a hypothesis regarding one of the possible causes of the decline in the frequency of scrub typhus and chikungunya cases reported in Kolkata and other districts of West Bengal. As an outcome, physicians treating undifferentiated febrile patients in endemic locations should look for chikungunya, scrub typhus, and existing coinfection between them to avoid delayed diagnosis and provide proper treatment against these infections.
Downloads
References
-
Annual report of hospital based surveillance of acute febrile illness in India in. Manipal Centre for Virus Research. [Internet] 2017. [cited 2022 January 21] Available from: https://manipal.edu/miv/research/projects/AFIstudy.html.
Google Scholar
1
-
Robinson ML, Kadam D, Khadse S, Balasubramanian U, Raichur P, Valvi C, al. Vector-borne disease is a common cause of hospitalized febrile illness in India. Am J Trop Med Hyg. 2018; 98(5): 1526-33.
DOI |
Google Scholar
2
-
Mohan A. Chikungunya fever: clinical manifestations & management. Indian J Med Res. 2006; 124: 471-474.
Google Scholar
3
-
Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007; 7: 319-327.
DOI |
Google Scholar
4
-
Padbidri VS, Gnaneswar TT. Epidemiological investigations of chikungunya epidemic at Barsi, Maharashtra state, India. J Hyg Epidemiol Microbiol Immunol. 1979; 23(4): 445-51.
Google Scholar
5
-
Pavri K. Disappearance of Chikungunya virus from India and South East Asia. Trans R Soc Trop Med Hyg. 1986; 80(3): 491.
DOI |
Google Scholar
6
-
Khatun T, Panja AS, Chatterjee RP, Chatterjee S. Chikungunya declining in West Bengal, India: A retrospective study (2010-2014). Int. Res J Bio Sci. 2016; 5(7): 1-4.
Google Scholar
7
-
Walker DH. Scrub typhus - scientific neglect, ever-widening impact. N Engl J Med. 2016; 375(10): 913-5.
DOI |
Google Scholar
8
-
Pathak S, Chaudhary N, Dhakal P, Shakya D, Dhungel P, Neupane G, et al. Clinical profile, complications and outcome of scrub typhus in children: A hospital based observational study in central Nepal. PLoS One. 2019; 14(8): e0220905.
DOI |
Google Scholar
9
-
Morch K, Manoharan A, Chandy S, Chacko N, Alvarez-Uria G, Patil S, et al. Acute undifferentiated fever in India: a multicentre study of aetiology and diagnostic accuracy. BMC Infect Dis. 2017; 17(1): 665.
DOI |
Google Scholar
10
-
Xu G, Walker DH, Jupiter D, Melby PC, Arcari CM. A review of the global epidemiology of scrub typhus. PLoS Negl Trop Dis. 2017; 11(11): e0006062.
DOI |
Google Scholar
11
-
Mahajan SK. Scrub typhus. J Assoc Physicians India. 2005; 53: 954-8.
Google Scholar
12
-
Bonell A, Lubell Y, Newton PN, Crump JA, Paris DH. Estimating the burden of scrub typhus: a systematic review. PLoS Negl Trop Dis. 2017; 11(9): e0005838.
DOI |
Google Scholar
13
-
Khan SA, Bora T, Chattopadhyay S, Jiang J, Richards AL, Dutta P. Seroepidemiology of rickettsial infections in Northeast India. Trans R Soc Trop Med Hyg. 2016; 110(8): 487-94.
DOI |
Google Scholar
14
-
Dey M, Sengupta M, Chatterjee RP, Sarkar S, Chatterjee SB. Co-Circulation of All Dengue Serotypes among Patients Attending a Tertiary Care Hospital in Kolkata. Virology & Immunology Journal. 2018; 2(9).
DOI |
Google Scholar
15
-
Simmons CP, Farrar JJ, Nguyen V, Wills B. Dengue. N Engl J Med. 2012; 366(15): 1423-32.
DOI |
Google Scholar
16
-
Zeller H, Van Bortel W, Sudre B. Chikungunya: its history in Africa and Asia and its spread to new regions in 2013-2014. J Infect Dis. 2016; 214(suppl 5): S436-40.
DOI |
Google Scholar
17
-
Mavalankar D, Shastri P, Bandyopadhyay T, Parmar J, Ramani KV. Increased mortality rate associated with chikungunya epidemic, Ahmedabad, India. Emerg Infect Dis. 2008; 14(3): 412-415.
DOI |
Google Scholar
18
-
Gogia A, Sairam B, Kakar A. Chikungunya: a mortality report. Open Forum Infectious Diseases. 2017; 4(Suppl 1): S518.
DOI |
Google Scholar
19
-
Renault P, Josseran L, Pierre V. Chikungunya-related fatality rates, Mauritius, India, and Reunion Island. Emerg Infect Dis. 2008; 14(8): 1327.
DOI |
Google Scholar
20
-
Chaudhry R, Thakur CK, Gupta N, Sagar T, Bahadur T, Wig N, et al. Mortality due to scrub typhus - report of five cases. Indian J Med Res. 2019; 149(6): 790-794.
DOI |
Google Scholar
21
-
Pathak S, Chaudhary N, Dhakal P, Yadav SR, Gupta BK, Kurmi OP. Comparative Study of Chikungunya Only and Chikungunya-Scrub Typhus Coinfection in Children: Findings from a Hospital-Based Observational Study from Central Nepal. Int J Pediatr. 2021; 2021: 6613564.
DOI |
Google Scholar
22
-
Rao PN, Van Eijk AM, Choubey S, Ali SZ, Dash A, Barla P, et al. Dengue, chikungunya, and scrub typhus are important etiologies of non-malarial febrile illness in Rourkela, Odisha, India. BMC Infectious Diseases. 2019; 19(1): 1-3.
DOI |
Google Scholar
23
-
Annual Administrative Report 2019-20. [Internet] 2022 Available from: http://westbengalforest.gov.in//upload/publication/AnnualAdminReport2019-20.pdf.
Google Scholar
24
-
Chatterjee RP, Chatterjee A, Chakraborty N, Chatterjee S. A Sero-epidemiological insight into the current status and rapid dissemination of Chikungunya virus infection in West Bengal – a two years retrospective study. Int J Sci Res. 2017; 6(9).
Google Scholar
25
-
Mukherjee S, Dash A, Tiwari S. Seropositivity of scrub typhus in patients attending a tertiary care hospital in Western Odisha. J Evolution Med Dent Sci. 2020; 9(04): 178-181.
DOI |
Google Scholar
26
-
Mallick S, Hazra S, Nandi T, Sarkar A. Scrub typhus: a hospital-based study in the northern districts of West Bengal, India. International Journal of Research in Medical Sciences. 2019; 7(6): 2403-2407.
DOI |
Google Scholar
27
-
Sengupta S, Mukherjee S, Haldar SK, Bhattacharya N, Tripathi A (2020). Re-emergence of Chikungunya virus infection in Eastern India. Brazilian Journal of Microbiology. 2020; 51(1): 177-182.
DOI |
Google Scholar
28
-
Park SW, Ha NY, Ryu B, Bang JH, Song H, Kim Y, et al. Urbanization of scrub typhus disease in South Korea. PLoS Negl Trop Dis. 2015; 9(5): e0003814.
DOI |
Google Scholar
29
Most read articles by the same author(s)
-
Rajendra Prasad Chatterjee,
Shilpa Chatterjee,
Suranjan Pal,
Biswajit Das,
Nilanjana Mitra,
Reena Ray Ghosh,
A Retrospective Assessment of Male Sexual Dysfunction in COVID-19 Infected Patients: A Witness in Kolkata, India , European Journal of Medical and Health Sciences: Vol. 5 No. 3 (2023)